

Microwave technologies in practice

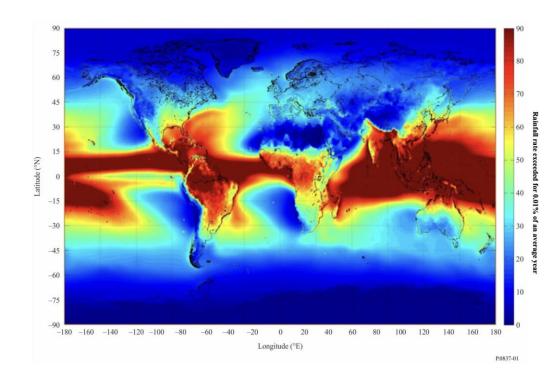
Ing. Jan Stejskal VanCo.cz

Introduction

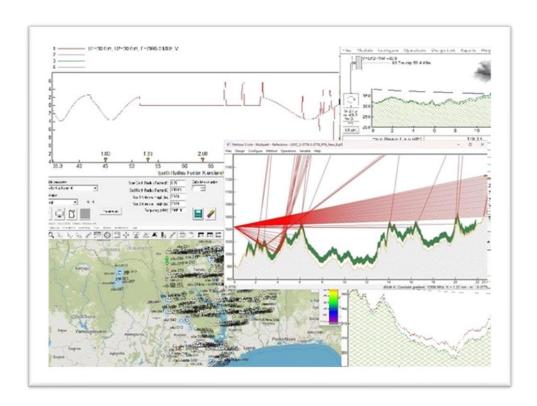
- In telco 25+ years
- Based in CZ, covering middle Europe
- Distribution of all tier one manufactures Aviat, Ceragon, Ericsson, RACOM, SAF, SIAE
- More than 10 000 MW links installed, more than 20 000 links sold

YES

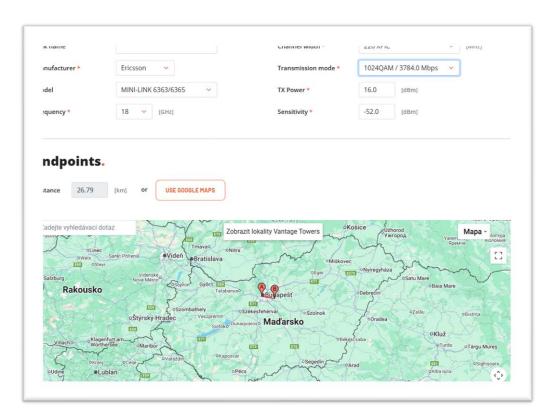
- Connectivity needed factors to be considered:
 - Capacity
 - Distance
 - Reliability
 - Price
 - Deployment speed



- Connectivity needed factors to be considered:
 - Capacity
 - Distance
 - Reliability
 - Price
 - Deployment speed


Let's look closer: Reliability

- Calculation methodologies based on the recommendations ITU-R P.837-7 and ITU-R P.453.
- Counts with:
 - Atmospheric attenuation
 - Rain attenuation and rain probability
 - Multipath, Atmosphere refractivity
- No problem to achieve 2 Gbps / 20 km link with 99.997% availability (14 mins/year)
- Complicated? No way! Use calc tools!


Use calculators!

For hardcore professionals:Pathloss

• For fast, simple, free and accurate results:

VanCo Link Calculator

Let's look closer: Capacity

• 1 Gbps? 10 Gbps? 100 Gbps? It's just about the right technology!

- Wider channels
- Higher modulations
- Multiple streams

... and a lot of math ©

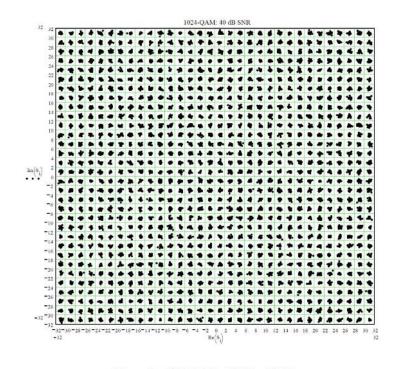


Figure 3 - 1024-QAM at SNR = 40 dB

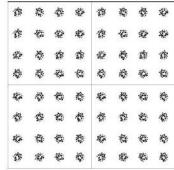


Fig. 1B CW Interference

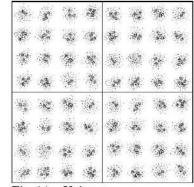
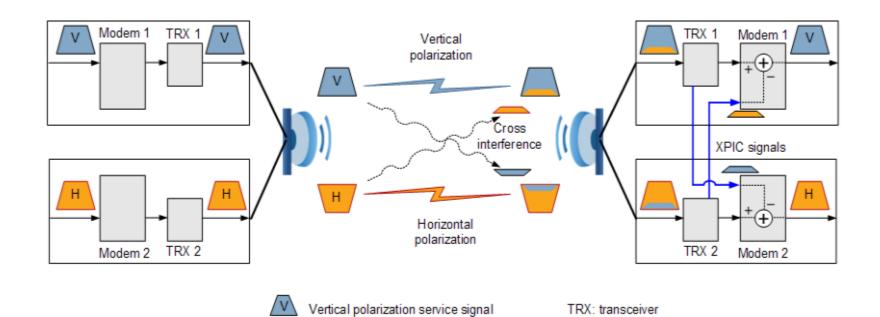
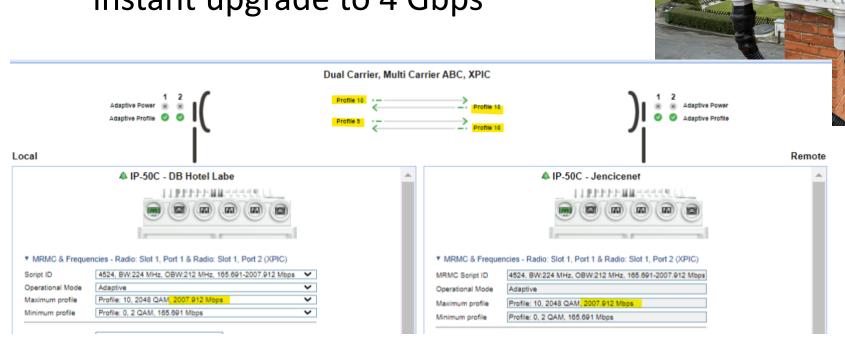



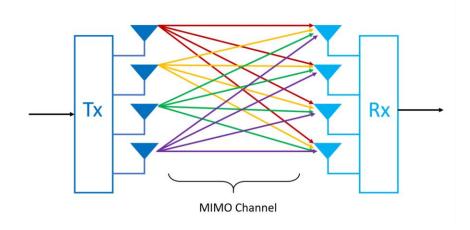
Fig. 1A Nois

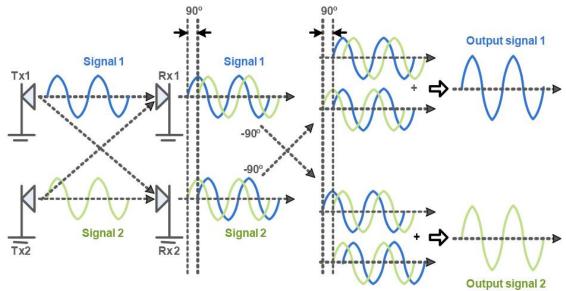
XPIC


- Cross-Polarization Interference Cancelling
- Two signals on the same frequency but with different polarizations

Horizontal polarization service signal

XPIC – real use cases


- Compact, easy to deploy
- Link distance 12 km
- Deployed as 2 Gbps,
 instant upgrade to 4 Gbps



MIMO

- Multiple Input Multiple Output
- Based on several (typically 2) streams with the same frequency and multiple antennas with exact space separation

Uses the principle of multipath propagation of radio signals and known phase shift

MIMO – real use cases

• 2x Ceragon IP-20C, 28 MHz, MIMO 4x4 (2x XPIC link in LoS MIMO configuration)

⇒1 Gbps capacity in 28 MHz channel

MIMO – real use cases

- E-Band setup
- 8x Ericsson MINI-LINK 6352
- 4x dual pol antenna
- 2.5 GHz channel / 18 dBm
- Link distance 1.5 km
- Linc calc for 100 Gbps ... 99.9995%

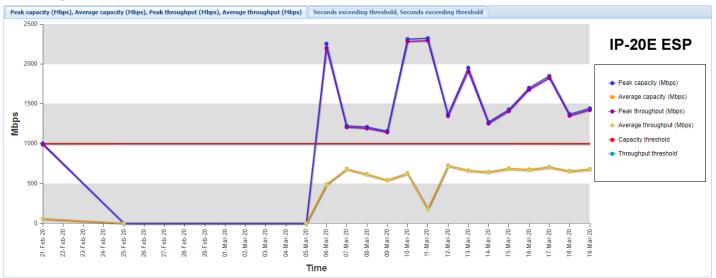
Let's look closer: Distance

• 20 Gbps link for 10 km with only 60cm antennas?

Modulation Link 1	Modulation Link 2	Total Capacity	Availability
1QAM_strong	-	151 Mbps	100 %
IQAM_std	-	176 Mbps	99.99984 %
L6QAM_strong	-	302 Mbps	99.99953 %
L6QAM_std	-	352 Mbps	99.99939 %
32QAM_std	-	441 Mbps	99.99888 %
64QAM_std	-	553 Mbps	99.99791 %
L28QAM_std	-	654 Mbps	99.99628 %
256QAM_std	-	754 Mbps	99.99159 %
512QAM_std	-	855 Mbps	99.97011 %
512QAM_std	BPSK_2_strong	1257 Mbps	99.95377 %
512QAM_std	BPSK_2_std	1538 Mbps	99.90644 %
512QAM_std	BPSK_std	2220 Mbps	99.88303 %
512QAM_std	4QAM_std	3586 Mbps	99.85689 %
L024QAM_std	-	946 Mbps	99.84965 %
L024QAM_std	16QAM_strong	4165 Mbps	99.75981 %
L024QAM_std	16QAM_std	6408 Mbps	99.68109 %
2048QAM_std	-	983 Mbps	99.44091 %
2048QAM_std	32QAM_std	7811 Mbps	99.33404 %
2048QAM_std	64QAM_std	9176 Mbps	98.23614 %
2048QAM_std	128QAM_std	10542 Mbps	80.99599 %

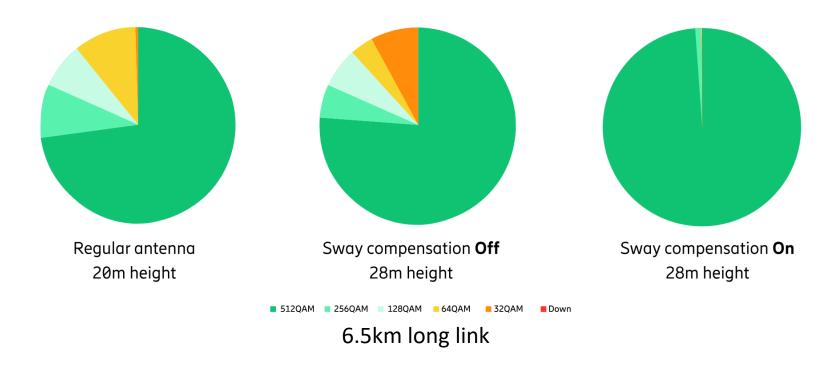
Multiband

- Combination of E-band (80 GHz) with lower frequency
- One dual-freq antenna or two antennas next to each other

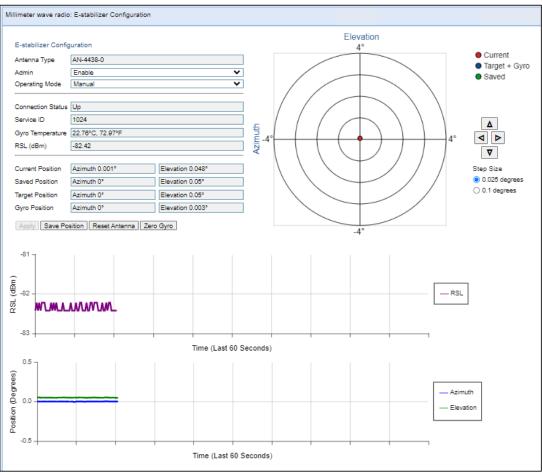


Multiband – real use cases

Capacity & Throughput PM report (Slot 1, Port 1, 24 hours)


Capacity of Enroughput Five report (white Carnet ADC, Group #1, 24 hours)

Stabilized antennas


- For 80 GHz band
- Mechanically stabilized feeder
- Enabling long hops with higher capacity

- Compensates for movements in any direction (both Vertical and Horizontal)
- Pole swing and sway in rates of up to 10 Hz
- Deflection of up to 4°

Stabilized antennas

Conclusion

- MW link = still fastest and cheapest way how to get a connectivity
- Over the past years smoothly moved from hundreds Mbps to 10 Gbps as typical deployment
- New technology and signal processing algorithms can:
 - Increase the distance
 - Boost the capacity
 - Lower the fees for frequency use
- New frequency bands (D-band, W-band) are on the way!

Thank you!

www.vanco.cz

www.wifishop.cz