Emerging Route Leak Mitigation Approaches

- Type 1 Hairpin Turn with Full Prefix Prefixes learned from one provider are propagated to another upstream provider
- Type 2 Lateral ISP-ISP-ISP Leak Peers propagate more than their own and customer prefixes
- Type 3 Leak of Transit-Provider Prefixes to Peer
 Prefixes learnt from transit provider propagated to peer
- Type 4 Leak of Peer Prefixes to Transit Provider Prefixes learnt from peer propagated to transit provider

- Type 5 Prefix Re-origination with Data Path to Legitimate Origin Propagation of prefixes learnt from provider to another provider, but as if it being originated by it
- Type 6 Accidental Leak of Internal Prefixes and More-Specific Propagation of internal prefixes (often more specifics) to providers or peers
- Possible Consequences of Route Leaks
 - Delays
 - Packet Loss
 - Blackholing
 - Eavesdropping / Sniffing

- **RPKI** to filter misoriginations
- Ingress **Filtering** based on **IRR** data and according to best practices
- Egress **Filtering** according to best practices
- BGP Monitoring and Incident Response
 - Reach out to leaking AS and/or their upstreams
 - Try to announce more preferred routes (e.g. more specifics)

- Better solutions are required!
 - Automated Leak Detection and Prevention
- New approaches
 - ASPA Autonomous System Provider Authorization
 - BGP Roles
 - Down Only Community

- ASPA: Autonomous System Provider Authorization
 - Verification of AS Path
- Each AS lists all its authorized provider AS numbers in its ASPA object
 - Similar to ROAs
 - Cryptograhically signed and distributed using the RPKI ecosystem

BGP AS_PATH Verification Based on Autonomous System Provider Authorization (ASPA) Objects draft-ietf-sidrops-aspa-verification-16

ASPA

• Full deployment of ASPA

- Customer-to-Provider: ASPA "forward" / "up-ramp"
- Peer-to-Peer: no ASPA
- Provider-to-Customer: ASPA "backward" / "down-ramp"
- Valley Free Routing
- Partial deployment
 - AS Path partially matches some "forward" and "backward" ASPAs
 - Any other ordering is a policy violation!
- Validation States: Valid, Unknown, Invalid

INVALID AS PATH – ASPA

INVALID

PARTIAL DEPLOYMENT – ASPA

ASPA

 \rightarrow Most route leaks are detectable if related ASPA attestations exist

- Lightweight process \rightarrow offloaded via RTRv2
- Software Support
 - Krill
 - Routinator
 - OpenBGPD
 - rpki-client
- Release of RFC expected for 2024
- Support of first RIRs in the next 1-2 years
- Availability in commercial BGP speaker implementations expected in ~2 years

- Idea: Assigning roles to BGP neighbors
- Roles
 - Provider
 - Customer
 - Route Server (RS)
 - Route Server Client (RS-Client)
 - Peer
- Valid Relationships
 - Provider \leftrightarrow Customer
 - Peer \leftrightarrow Peer
 - $RS \leftrightarrow RS$ -Client
- Negotiation of Roles
 - Session not established on mismatch

- Sent to Customer, RS-Client or Peer
- OTC carries AS number
- OTC checking **Ingress**:
 - 1. OTC present: sender is Customer or RS-Client: reject
 - 2. OTC present: sender is Peer and sender AS not equals AS value in OTC: reject
 - **3. OTC not present:** sender is Provider, Peer or RS: **set OTC with sender AS**

- OTC checking **Egress**:
 - 1. OTC not present: receiver is Customer, Peer or RS-Client: set OTC with own AS value
 - 2. OTC present: receiver is Provider, Peer or RS: reject
- OTC is set for both Ingress and Egress, if not set before → more robust
 - \rightarrow early adaptors profit

PARTIAL DEPLOYMENT EXAMPLE – BGP ROLES

- \rightarrow Automates Leak Detection and Prevention
- \rightarrow Mitigation multiple hops away possible
- Software Support
 - Bird
 - FRR
 - OpenBGP
 - Mikrotik
- Unfortunately: nothing announced from the big vendors
 - Juniper, Arista, Cisco, Nokia ...
 - if possible: Open Feature Requests!

- Currently under specification (draft-ietf-grow-route-leak-detection-mitigation)
- Conecpt similar to BGP Roles

 → but use of well-known Large Community instead of transitive Attribute
- Communities and Policies have to be defined and assigned manually

Methods for Detection and Mitigation of BGP Route Leaks

draft-ietf-idr-route-leak-detection-mitigation-11

DOWN ONLY COMMUNITY

• DO checking **Egress**: 1. DO present: receiver is \bigcirc DO = (W, DO, AS1)Provider, Peer or RS: reject 2. DO not present: receiver is AS1 Customer or Peer: set DO with own AS value 0 DO = (W, DO, AS1)(W, DO, AS2) AS2 DO = (W, DO, AS1)(W, DO, AS2) AS3 ASX (W, DO, AS3)

PARTIAL DEPLOYMENT – DOWN ONLY COMMUNITY

+ Advantages

- No update of Router OS necessary
- Incremental deployment possible
- Fast deployment possible

+ Disadvantages

- Not yet standardized
- Communities more likely to be dropped
- Lack of negative match communities like **a:b:!c** in most implementations
 - Compliant peer as sender: always one DO with value equals to peer AS
 - Ingress checking of peers simplified:

DO present: sender is Peer and DO AS value not matches sender AS: **reject**

